首页> 外文OA文献 >Two-stage joint selection method to identify candidate markers from genome-wide association studies
【2h】

Two-stage joint selection method to identify candidate markers from genome-wide association studies

机译:从全基因组关联研究中鉴定候选标记的两阶段联合选择方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interaction among multiple genes and environmental factors can affect an individual's susceptibility to disease. Some genes may not show strong marginal associations when they affect disease risk through interactions with other genes. As a result, these genes may not be identified by single-marker methods that are widely used in genome-wide association studies. To explore this possibility in real data, we carried out a two-stage model selection procedure of joint single-nucleotide polymorphism (SNP) analysis to detect genes associated with rheumatoid arthritis (RA) using Genetic Analysis Workshop 16 genome-wide association study data. In the first stage, the genetic markers were screened through an exhaustive two-dimensional search, through which promising SNP and SNP pairs were identified. Then, LASSO was used to choose putative SNPs from the candidates identified in the first stage. We then use the RA data collected by the Wellcome Trust Case Control Consortium to validate the putative genetic factors. Balancing computational load and statistical power, this method detects joint effects that may fail to emerge from single-marker analysis. Based on our proposed approach, we not only replicated the identification of important RA risk genes, but also found novel genes and their epistatic effects on RA. To our knowledge, this is the first two-dimensional scan based analysis for a real genome-wide association study.
机译:多个基因和环境因素之间的相互作用会影响个人对疾病的敏感性。当某些基因通过与其他基因的相互作用影响疾病风险时,可能不会显示出强大的边缘关联。结果,可能无法通过在全基因组关联研究中广泛使用的单标记方法鉴定这些基因。为了在真实数据中探索这种可能性,我们使用遗传分析研讨会16全基因组关联研究数据,进行了一个两阶段联合单核苷酸多态性(SNP)分析模型选择程序,以检测与类风湿关节炎(RA)相关的基因。在第一阶段,通过详尽的二维搜索筛选遗传标记,从而鉴定出有前途的SNP和SNP对。然后,使用LASSO从第一阶段中确定的候选物中选择推定的SNP。然后,我们使用由Wellcome Trust病例对照协会收集的RA数据来验证推定的遗传因素。在计算负载和统计能力之间取得平衡,此方法可检测可能无法从单标记分析中出现的联合效应。基于我们提出的方法,我们不仅重复了重要的RA风险基因的鉴定,还发现了新基因及其对RA的上位性作用。据我们所知,这是真正的全基因组关联研究的第一个基于二维扫描的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号